IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

On the spectrum of S= 1/2 XXX Heisenberg chain with elliptic exchange

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1995 J. Phys. A: Math. Gen. 28 L439
(http://iopscience.iop.org/0305-4470/28/16/004)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 02/06/2010 at 00:46

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/28/16
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys. A: Math. Gen. 28 (1995) L439-L445. Printed in the UK

LETTER TO THE EDITOR

On the spectrum of S = 1 X X X Heisenberg chain with
elliptic exchange

V I Inozemtsevy
Institute for Solid State Physics, University of Tokyo, Roppongi, Minato-ku, Tokyo 106, Japan

Received 28 April 1995

Abstract. Itis found that the Hamiltonian of the S = £ isotropic Heisenberg chain with N sites
and elliptic non-nearest-neighbour exchange is diagonalized in each sector of the Hilbert space
with magnetization N/2 = M, 1 < M < [N /2], by means of double quasiperiodic meromorphic
solutions to the M -particle guantum Calogero-Moser problem on a line. The spectram and
highest-weight states are determined by the solutions of the systems of transcendental Bethe-
ansatz-type equations which arise as restrictions on particle pseudomomenta.

In recent years, much attention has been paid to studies of 1D lattice systems, due to their
relevance to principal notions of field theory and experimental investigations of effectively
low-dimensional crystals. Even the simplest lattice systems, pamely isotropic § = 3
Heisenberg chains, have unveiled a rich structure and have provided non-trivial examples
of many-body interactions. The corresponding mathematical problem consists of finding
the proper analytic tool for the diagonalization of the model Hamiltonian

?W—; Z:hU—Mmm—D h(j) = h(j + N) m
: <jERSN
where &; are Pauli matrices acting on the spin at the Jjth site.
At finite N, it has been successfully treated in the integrable cases of nearest-peighbour
couplmg solved by Bethe {1] ‘

7(7) = 81(modmy.1 @)
and long-range trigonometric exchange proposed independently by Haldanc and Shastry [2]
N  =mj -2
h(jd =] —=sin—=] . . ,
W (”mnN) ®

At present, a number of impressive results ate known for both these models. In particular,
they include the additivity of the spectrum under proper choice of ‘rapidity’ variables [1,3],
the description of the underlying symmetry [4,5], the construction of thermodynamics
in the limit N — co [6,3], the connection with the continuum integrable many-body
problems [7, 2], and closed-form expressions of correlations in the antiferromagnetic ground
state. The rich collection of various generalizations and physical applications of the Bethe
and Haldane—Shastry models can be found in recent review papers [8,9].

t On leave from: Theoretical Physcs Laboratory, JINR, Dubna, Russia.
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Several years ago, I introduced a more general one-parametric form of spin exchange
which provides another example of the integrable lattice Hamiltonian (1) {10). It was
motivated by the similarity of the Lax representation of the Heisenberg equations of motion
for the continuum and lattice models. In the former case, the most general translationally-
invariant integrable Hamiltonian with elliptic pairwise particle interaction was found by
Calogero {11] and Moser [12]:

2
Hom = % [— > aa =+ AR+ 1) Zp(x,, x},):l 4
By .
The existence of extra integrals of motion commuting with (4) was demonstrated in [13].
Recently, the eigenvalue problem for the elliptic Calogero-Moser operator received much
attention due to its relation to the representations of double affine algebras and the solutions
of Knizhnik—Zamolodchikov-Bernard equations [14, 15].
The lattice analogue of (4) is given by (1) with

m=(LenZy’ [m(j) 2o (%)] ’ )

where gy (x), {y(x) are the Weierstrass functions defined on the torus Ty = C/ZN + Zw,
w = ik, & € R;. Remarkably, it turned out that the exchange (5) comprises both (2)
and (3) [10]: in fact, the factor in (5) is chosen so as to reproduce the nearest-neighbour
coupling under periodic boundary conditions {2} in the limit # — { and the long-range
exchange (3) in the limit ¥ — oo. -

However, up to now much Iess has been known about the lattice model with the exchange
(5) compared with its limiting forms, due to the mathematical complexities caused by
the presence of the Weierstrass functions. The family of operators which commute with
H has only recently been found [16]. The simpler case of the infinite chain N — oo,
h{j) = [sinh(z/«)/ sinh(7 j /k)]? has been considered in detail in [17]. As for finite N, the
description of the spectrum has been performed only for simplest two- and three-magnon
excitations over ferromagnetic vacuum [10, 18, 197,

The aim of this letter is to demonstrate the remarkable correspondence between the
highest-weight eigenstates of the lattice Hamiltonian with the elliptic exchange (5) and the
double quasiperiodic meromorphic eigenfunctions of the Calogero-Moser operator {4) which
allows one to formulate Bethe-ansatz-type equations for calculating the wholc specm.un

The Hamiltonian (1) commutes with the operator of total spin § = 1_1 o;. Then
the eigenproblem for it is decomposed into the problems in the subspaces formed by the
common eigenvectors of Sz and S%2suchthat S= S =N 2—M, 0 M [N/,

HOW ) = Eyly®). ©

The eigenvectors |1} are written in the usuval form

N M

™y = 3" ¥wlr--na) [ [ 55,100 M
ryny =1

where 10) = | 4 --- 1) is the ferromagnetic ground state with all sﬂpins up and the

summation is taken over all combinations of integers {n} < N such that ]"[u «Bp—n) #£0.

Substitution of (7) in (6) results in the lattice Schridinger equation for the completely

symmetric wavefunction ¥y

N

M .
Z Z@N(",ﬂ—S)WM(HJ'---,H,B-I,Ssn,s-i‘l,-n,"M)



Letter to the Editor - L441

M
+ Z&Jy(ﬂg —-n,,) —'EM] wu(n;,...{an)=0. . 8)
Y i

The eigenvalues {E,} are given by

ums (22 feu 2[HREDN ) @) o

where &;(x) is the Weierstrass zeta function defined on the torus Ty = C/Z+ Zow.
To find the solutions to (8), let us consider the following ansatz for ra:

IR Z LTI % e ) A ISR TI%) : (10)
Pery
' . M - -
0P (m, L., ) = exp (—iZ pvnu) TR a1
- =1

where 1y, is the group of all permutations { P} of the numbers from 1 to N and x(p Y is the
solution to the continuum quantum many-particle problem

s M

[—— > ai + Y pnleg — 1) — Emm]x‘”(xl,...,xﬂf) =0. (12)
8 B ,

It is specified up to a normalization factor by the particle psendomomenta (pr, ..., pa).

The standard argumentation of the Floguet-Bloch theory shows that due to perodicity of

the potential term in (12) x(” ) obcys the quasiperiodicity conditions [18]

(D0, xp A N xar) = expGpaNIXE et . Xag) (13)

X201 X+ 0, .00, xi) = €xp(gp(P) + ipp0) Xy (1, -y i) ,
O\Imm(q‘g)<2:lz’ 1€ M. (14)

The eigenvalue Ep(p) is some symmetric function of (p1,..., pur). The set {gg(p)} is
also. completely determined by {p}. In this letter I do not refer to the explicit form of these
functions, which is still unknown for M > 3.

The structure-of the singularity of @y (x) at x = 0 1mplzes that x(p ) can be presented
in the form

( _ F(P)(xi,---,xu)

M
X = GQitr .o xa) = | | onlea — xp) (s)

G(xls'--st) a<f

where ox{x) is the Weierstrass sigma function on the torus 7x. The only simple zero of
aN(x) on Ty is located at x = 0. Thus IG(xl, ..., X3)]"! absorbs all the singularities of
x{P on the hypersurfaces x, = xg. The numerator F@) in (15) is analytic on (7y)" and
obeys the equation

M 52 ()
> ol [2EM(p)——Z(m(xq—xg) cN(xa—xﬂ))] F®

= 0% oy
aF® 3 F®
= ¥ fw(xa ~ xp) ( p ) . , (16}
af g
The regularity of the lcft-hand side of (16) as x, — x, implies that
. f B d
— - — ) F(xy, ..., =x, =0 - 17
: ( 5%, axv) (x1 xi)lz, d amn
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for any pair (u, v).

The remarkable fact is that the properties (13-15), (17) of x ‘.Ef ) allow one to validate the
ansatz (10}, (11) for the eigenfunctions of the lattice Schrédinger equation (8). Substitution
of {10) in (8) yields

M M
Z [Zsﬁ(nm, e ey + Z: pn(npg —npy) — 5M] fﬂﬁr’)(nm, . A,-'IPM)} =0
#y

Perxy | =1
(18)
where
N
Sg(npts... npy) = Z ton(npp —s)éf;’caﬁ?(nm. -y py) (19
SFENPY - BPM

The operator Q.(;) in (19) replaces the Bth argument of the function of M variables to s.
To calculate the sum (19}, let us introduce, following the consideration of the hyperbolic
exchange in [17], the function of one complex variable x:

M
W)= pnlnpp—s — )05 V0P npr, .. npu). (20)
s=1 .
As a consequence of (11),(13),(14), it obeys the relations
WEE+ D =W WP +o) =expl@penWPx). QD

The only singularity of W}C,B) on the torus T; = C/Z 4 Zw is located at the point x = 0. It
arises from the terms in (20) with s = npy, ..., npy. The Laurent decomposition of (20)
near x = 0 has the form

W) = wosx™? + w_x™" 4wy + O). 22)
The explicit expressions for w_; can be found from (20):

(p}

wo = @ (np1, . ... npa) (23a)
d ~
W =3 (0,(»?)(”?1, ooy pa) + (“DP Gy, ., ny) Z Tgpiners ..., HPM)Q;;"”)
Rrp ‘ T
M
x exp (—i > punn) FP ey, ....npa) (23b)
U=I
18 3
wy = Sgnpr, ... . npu)+ 5 s P (np1, ..., 0pa) + (=D Gm, ..., ny)
npg

X Z Taa(np1s - -2 ppr)
A#£B
[Uﬁx(nm, i) 05 + o (npp — nm)aég'"”:l

M
X exp (—i 3 PvnPu) FP(npy,...,npu) (23¢)

v=I
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where

M on(np, —npg)
Ten(py, - o> i) = On(npy, — 2pg) 1_[ U
p-,éﬁ.l O.N(HP,O _nPl)

Uga(Bpy, -~ Rpag) = ©p(npy — npg) — son (fpg — Rps) Z In(np, — npad.
p#EBA

Here (—1)" means that the parity of the permutation P and the action of the operator
305" on the function Y of M variables is defined as

. 2
an;ﬂ)Y(Zl, e 2 = E’;’;Y(Zh [ ZM)lzp=nm- 24

The next step consists of writing the explicit expression for the function W,(f) {(x) obeying
the relations (21} and (22) [17]:

o1(rg + %)
a(rg —x)
x[e1(x —rg) — Li(x) + 61(rp) — 51(2rp)i} (25)

The Weierstrass functions g1, ¢y and ¢y in (25) are defined on the torus 77 and the parameters
ag, rg are chosen so as to satisfy the conditions (21):

ag = (w7 gp(P)01(3) rp = —(4ni) " ga(p).

By expanding equation (25) in powers of x one can find wp in terms of w.2, w_1, ¢p and
obtain the explicit expression for Sg(npi, ..., npy) with the use of (23a)—(23¢). It turn
out that equation (18) can be recast in the form .

WP (x) = explagx) fw_s(gn (£) — p1(rp) + (wealag + 2L1(rg)) — w_y)

LA M
> l:-_:z' > (anp,s - fﬁ(P)) + 3 pn(npg —npy) ~ En

Pemy p=1 By

M
+ EEE(P)]QD(‘")(HH, e Tipn)

p=t
=16 3D Y [Zaalts s nps)
: Pery BF#EL
+ Ziglnpt, ..., neard) (26)
where
Fs(p) = @D gp(P)01 (D) — Li(@ri) " gp(p)) @7)
ea(p) = 312D "' 45(p)) (28)

and Zg(nr1, +.., pp) 18 defined by the relation )
Zg(npt, .- ney) = Tpalnpr, ..o fpar) [Um(nm, e npm)éfg"”) + pon(pn — npg)

M
x 305™ — fa (p)Qg”’*))] exp (—i 3. punpu) FP(mpy,....npy).

v=1

(29)
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Turning to the definition (11) of P, one observes that each term on the left-hand side of
(26) has the same structure as the left-hand side of the many-particle Schrddinger equation
(12}, and vanishes if £y and fz(p) are chosen to be

M
Em =Eu(p)+ Y 2(p). (31)

v=1
Now let us prove that that the right-hand side of (26) also vanishes. The crucial observation
is that the sum over permatations in it can be recast in the form

E (—1)F }:[Zﬂx(ﬂm, cvstp) — Zog(nprry .., pRY)]
Bt

Pemy

where R is the transposition (§ <> A) which leaves the other numbers from 1 to M
unchanged. The term in square brackets is simplified drastically with the use of the identities

Tg(npriy ... Bpry) = Tgalnpy, ... py)
Usg(npri, ... npryr) = Uga(nprs .o oo Bipar)
Qiﬂpﬂ)F(an, cevs RPRM) = Qg’”) Finpy, ..., npp).
Taking into account relations (29), (30), one finds
Zap(npry ... npy) — Zog(RpR1s - -  RPRM)
= Tglnp, ..., es)pn(nps — npg) .
;cex '(+)+ipn (3 3)
P Pg T Pajnp; = oIt Pp anP‘B s

XFP(npi, ..., nps)lnpmnpy - (32)

The last factor in (32) vanishes due to condition (17) imposed by the regularity of the
left-hand side of the Schrédinger equation (16).

It remains for us to show that the states of the spin lattice given by (7) with the functions
yrys of the Torm (10), (11) are highest-weight states with § = §3. This statement is equivalent
to the relation S,.|y") = 0, which can be rewritten as

> Q};"soﬁ‘,”(nm, s lpy) =0 (33)

B=1 Pe:rﬁ’ SFER[ M1

where {NS) } are the subsets of ma: P Errr‘ff) < PB = M. The sums over s in (33) can be

reduced and presented in closed form by vsing the technique described above. It turns out
that the left-hand side of (33) contains factors similar to the last factor in (32) and vanishes
due to condition (17).

The descendant states with Sz < S are obtained by acting with S.. on the basic states
1Y (7). Thus the present consideration allows one, in principle, to reproduce all the
cigenvectors of 7% for the exchange (5), as has been done by Bethe [1] for nearest-
neighbour spin coupling. Equations (30) for the pseudomomenta {p} constitute the analogue
of the usval Bethe ansatz. The spectrum is given by relations () and (31).

In conclusion, it has been demonstrated that the procedure of exact diagonalization of
the lattice Hamiltonian with non-nearest-neighbour elliptic exchange can be reduced in each
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sector of the Hilbert space with given magnetization to the construction of the special double
quasiperiodic eigenfunctions of the many-particle Calogero-Moser problem: on a continuous
line. The Bethe-ansatz-type equations appear very naturally as a set of restrictions on the
particle pseudomomenta. The proof of this cotrrespodence between lattice and continuum
integrable models is based only on analytic properties of the eigenfunctions. One can expect
that the set of spin lattice states constructed in this way is complete. This is supported by
an exact analytic proof in the two-magnon case.

The analysis of the explicit form of equations (30) available for M = 2, 3 shows that the
spectrum of the lattice Hamiltonian with the exchange (5) is not additive, rather it is given
in terms of pseudomomenta {p} or phases which parametrize the sets {p, g} [10,19]. The
problem of finding appropriate set of parameters which gives the ‘separation’ of the spectrum
remains open. It would be also of interest to consider various limits (N — o0,k — 0, 00)
so as to recover the results of [1,3,17] and prove the validity of the approximate methods
of the asymptotlc Bethe ansatz after finding the cxphc:t form of the functions ggz(p) and

Ex(p).

I would like to thank Professor M Takahashi for his interest to this work and for useful
discussions. The financial support of the Ministry of Education, Science and Culture of
Japan is gratefully acknowledged.
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