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J. Phys. A: Math. Gen. 28 (1995) L439-L445. FTinted in the UK 

LE’ITER TO THE EDITOR 

On the spectrum of S = $ X X X  Heisenberg chain with 
elliptic exchange 

V I Inozemtsevt, 
Institute for Solid State Physics, University of Tokyo, Roppongi, Minato-ku, Tokyo 106, Japan 

Received 28 April 1995 

Abstracf It is found that the Hamiltoniaa of the S = f isotropic Heisenberg chain with N sites 
and elliptic non-nearest-neighbour exchange i s  diagonalized in each sector of the Hilbert space 
with magnetization N / 2 -  M, 1 c M 4 [ N / 2 ] ,  by means of double quasiperiodic meromorphic 
solutions to the M-particle quantum Calogero-Moser problem on a line. The specmm and 
highest-weight states me determined by the solutions of the systems of transrendental Bethe- 
ansatz-type eq@ons which arise as restrictions on p d c l e  pseudomomenta. 

In recent years, much attention has been paid to studies of ID lattice systems, due to their 
relevance to principal notions of field theory and experimental investigations of effectively 
low-dimensional crystals. Even the simplest lattice systems, namely isotropic S = 4 
Heisenberg chains, have unveiled a rich structure and have provided non-hivial examples 
of many-body interactions. The corresponding mathematical problem consists of finding 
the proper analytic tool for the diagonalization of the model Hamiltonian 

where uj are Pauli matrices acting on the spin at the jth site. 

coupling solved hy~Bethe [l] 
At finite N, it has been successfully treated in the integrable cases of nearest-neighbour 

h ( j )  = ~ l j ( d N ) I . I  (2) 

and long-range trigonometric exchange proposed independently by Haldane and Shastry [Z] 

h ( j )  = -sm- (: ’ 3’ (3) 

At present, a number of impressive results are known for both these models. In particular, 
they include the additivity of the spectrum under proper choice of ‘rapidity’ variables [1,3], 
the description of the underlying symmetry [4,5], the construction of thermodynamics 
in the limit N 4 00 [6,31, the connection with the continuum integrable many-body 
problems [7,21, and closed-form expressions of correlations in the antiferromagnetic ground 
state. The rich collection of various generalizations and physical applications of the Bethe 
and Haldandhastry models can he found in recent review papers [8,9]. 

t On leave f”: Theoretical Physcs Laboratory, IINR, Dubna, Russia 
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L440 Letter to the Editor 

Several years ago, I introduced a more general one-parametric form of spin exchange 
which provides another example of the integrable lattice Hamiltonian ( 1 )  [ l o ] .  It was 
motivated by the similarity of the Lax representation of the Heisenberg equations of motion 
for the continuum and lattice models. In the former case, the most general translationally- 
invariant integrable Hamiltonian with elliptic pairwise particle interaction was found by 
Calogero 1111 and Moser [12]: 

The existence of extra integrals of motion commuting with (4) was demonstrated in [13]. 
Recently, the eigenvalue problem for the elliptic Calogerc-Moser operator received much 
attention due to its relation to the representations of double affine algebras and the solutions 
of Knizhnik-Zamolodchikov-Bernard equations [14,15]. 

The lattice analogue of (4) is given by (1) with 

where @N(x) ,  D ( x )  are the Weiersaass functions defined on the torus TN = C / Z N  4- Z o ,  
w = iK,  K E W+. Remarkably, it turned out that the exchange (5) comprises both (2) 
and (3) [lo]: in fact, the factor in (5) is chosen so as to reproduce the nearest-neighbour 
coupling under periodic boundary conditions (2) in the l i t  K -+ 0 and the long-range 
exchange (3) in the limit K + CO. 

However, up to now much less has been known about the lattice model with the exchange 
(5) compared with its limiting forms, due to the mathematical complexities caused by 
the presence of the Weierstrass functions. The family of operators which commute with 
'H(.') has only recently been found [16]. The simpler case of the infinite chain N -+ CO, 
h( j )  -+ [sinh(?r/~)/sinh(nj/~)]~ has been considered in detail in [I7]. As for finite N, the 
description of the spectrum has been performed only for simplest two- and three-magnon 
excitations over ferromagnetic vacuum [IO, 18,191. 

The aim of this letter is to demonstrate the remarkable correspondence between the 
highest-weight eigenstates of the lattice Hamiltonian with the elliptic exchange (5) and the 
double quasiperiodic meromorphic eigenfunctions of the Calogerc-Moser operator (4) which 
allows one to formulate Bethe-ansatz-type equations for calculating the whole spectrum. 

The Hamiltonian ( 1 )  commutes with the operator of total spin s = f cy=, uj. Then 
the eigenproblem for it is decomposed into the problems in the subspaces formed by the 
common eigenvectors of Sf and S2 such that S = S3 = N / 2  - M ,  0 Q M Q [ N / 2 ] ,  

'H(qIp) = EMl+(M)). (6) 
The eigenvectors I@@')) are written in the usual form 

N M 

n, ... nu B=1 
l @ 9  = @M(nl. . .nM)nsn;, lo ,  U) 

where IO) = I tl. ... t) is the ferromagnetic ground state with all s ins up and the 
summation is taken over all combinations of integers [n] < N such that n,,,(n, -nv)  # 0. 
Substitution of (7) in (6) results in the lattice Schrodinger equation for the completely 
symmetric wavefunction @M 

9 

N M  C ~ N c n p  - S ) W ~ ,  . . . . np-1. S, na+l. .  . . , nM) 
spq. .... "Id B=I 
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The &genvalues { E M ]  are given by 

where 51 (x )  is the Weierstrass zeta function defined on the torus = C/Z + Zo. 
To find the solutions to (S), let us consider the following ansatz for @M: 

t w ( n 1 , .  . . I m) = p,$)(nPl , .  . . , n P M )  (10) 
P U r M  

where RM is the group of all permutations {P},of the nhmbers from 1 to N and ~ 2 '  is the 
solution to the continuum quantum many-particle problem ' 

It is specified up to a noninkation factor by the particle pseudomomenta ( p l ,  . . . , pu) .  
The standard argumentation of the Floquet-Bloch theory shows that due to perodicity of 
the potential term in (12) x$' obeys the quasiperiodicity conditions /18] 

(13) xu ( X I . .  . . .XI  + N ,  . . . I XY) = exp(ippN)x, (11, . . . , XY) 

xy ( X I , .  . . . xp + w ,  . . . . XY) = exp(qp(p) + i p p ) x Y  ( X I ,  . . . . XY) 

o < ~ m m ( q g )  < 2R 1 < B < M. (14) 
The eigenvalue  EM(^) is some symmetric function of ( p l , .  . . , p ~ ) .  The set (q#(p)}  is 
alsqcompletely determined by { p ] .  In this letter I do not refer to the explicit form of these 
functions, which is still unknown for M > 3. 

The structureof the singularity of , p ~ ( x )  at x = 0 implies that x$' can be presented 
in the form 

(P )  @) 

( P )  @) 

. ,  

where U,&) is the Weiersbass sigma function on the torus TN. The only simple zero of 
U&) on TN is located at x = 0: Thus [ G ( x l ,  . . . , x ~ ) ] - l  absorbs all the singularities of 
x,$) on the hypersurfaces xcl = xp. The numerator F ( P )  in (15) is analytic on ( T N ) ~  and 
obeys the equation 

The regularity of the left-hand side of (16) as x p  + x ,  implies that 
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for any pair (p, U). 
The remarkable fact is that the properties (13-15), (17) of x$) allow one to validate the 

ansatz (lo), (11) for the eigenfunctions of the lattice Schriidinger equation (8). Substitution 
of (10) in (8) yields 

[ 5 S p ( n p 1 .  .. . , npy)  + 
P€lrM @=I IX I 1 ”npp - n p y )  - EM ffQ’(np,, . . . , npy)  = 0 

where 

~ p ( n P l ~ . . . , w M )  = 2 pN(nPp-s)Qs vy (nPi.....npM). 

The operator 6;) in (19) replaces the j3th argument of the function of M variables to s. 

exchange in [17], the function of one complex variable x :  

-(s+=) ( P )  

(19) *(r) ( P )  

s # m .  .... npu 

To calculate the sum (19), let us introduce, following the consideration of the hyperbolic 

M 

(20) wF’(x) z @ N ( n P p  - - S  - X ) e p  Vy @ P I . .  . .,nPM). 
S=l 

As a consequence of (11),(13),(14), it obeys the relations 

W$”CX + 1 )  = w?’(x) WF)(X + w )  = exp(qp(p))wy(x). (21) 

The only singularity of Wy)  on the torus Ts = C/Z + Zw is located at the point x = 0. It 
arises from the terms in (20) with s = npl. . . . , n p ~ .  The Laurent decomposition of (20) 
nearx = 0 has the form 

(22) W$B)(x) = w-2x-2 + w-0-1 + WO + O(X). 

The explicit expressions for w-; can he found from (20): 

(234 (P) 
w-2 = ‘p, @PI 1 . .  . . nPM) 
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where 

Here aQp) on the function Y of M variables is defined as 
means that the parity of the pennutition P and the action of the operator 

(24) 
a 

azs 
a Q y ' Y ( z 1 , .  , E M )  = -Y(Zi, .  . . . Z ~ ) l y = n ~ ~ .  

The next step consists of writing the explicit expression for the function W$"(x) obeying 
the relations (21) and (22) [171: 

x [ h ( x  -rp) - h ( x )  + h( rp )  - h(2rp)ll. (25) 

The Weiersmass functions ,pl, 51 and ul in (25) are defined on the torus TI and the parameters 
ap, ra are. chosen so as to satisfy the conditions (21): 

up = (zi)-'qp(p)cl(&) rp = -(4zi)-Iqp(p), 

By expanding equation (25) in powers of x one can find WO in terms of w-z, w-1, qp and 
obtain the explicit expression for S6(npl,. . . , n P M )  with the use of (234423~) .  It turns 
out that equation (18) can be recast in the form 
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Turning to the definition ( 1 1 )  of @), one observes that each term on the left-hand side of 
(26) has the same structure as the left-hwd side of the many-particle Schradinger equation 
(12), and vanishes if EM and f g ( p )  are chosen to be 

(30) fB(p)  = -ipg fl  = 1 , .  . . , M 

Now let us prove that that the right-hand side of (26) also vanishes. The crucial observation 
is that the sum over permutations in it can be recast in the form 

where R is the transposition (B e A) which leaves the other numbers from 1 to M 
unchanged. The term in square brackets is simplified drastically with the use of the identities 

K # ( n P R l ,  .... n P R M )  = T p A ( n P l ,  . . . .nPM) 

ulg(nPRI,. .. , ~ P R M )  = Vgi(npi , .  . . , n p M )  

b y P n ) F ( n p ~ l , .  . . , ~ P R M )  = fij;")F(npl,. . . , n p ~ ) .  

Taking into account relations (29), (30), one finds 

z#A(nPl,  ..., n P M ) - Z ~ B ( R P R l r - . . r n P R M )  

=Tah(nPl , . . . , n P M ) ~ N ( n P l - - P g )  

xF'"(np1, . . . . ~ P M ) I ~ ~ ~ = ~ ~ ~ .  (32) 
The last factor in (32) vanishes due to condition (17) imposed by the regularity of the 
left-hand side of the Schrdinger equation (16). 

It remains for us to show that the states of the spin lattice given by (7) with the functions 
$rM of the form ( lo) ,  (1 1 )  are highest-weight states with S = S3. This statement is equivalent 
to the relation S+I@(M)) = 0, which can be rewritten as 

where (n,$)] are the subsets of n ~ :  P €~nf' ff Pfl = M. The sums overs in (33) can be 
reduced and presented in closed form by using the technique described above. It hlms out 
that the left-hand side of (33) contains factors similar to the last factor in (32) and vanishes 
due to condition (17). 

The descendant states with S, c S are obtained by acting with S- on the basic states 
I@@')) (7). Thus the present consideration allows one, in principle, to reproduce all the 
eigenvectors of @ 'for the exchange (S), as has been done hy Bethe [ l ]  for nearest- 
neighbour spin coupling. Equations (30) for the pseudomomenta ( p }  constitute the analogue 
of the usual Bethe ansatz. The specmm is given by relations (9) and (31). 

In conclusion, it has been demonstrated that the procedure of exact diagonalization of 
the lattice Hamiltonian with non-nearest-neighhour elliptic exchange can be reduced in each 
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sector of the Hilbert space with given magnetization to the construction of the special double 
quasiperiodic, eigenfunctions of the many-particle Calogerc-Moser problem on a continuous 
line. The Bethe-ansatz-type equations appear very naturally as a set of restrictions on the 
particle pseudomomenta. The proof of this correspodence between lattice and continuum 
integrable models is based only on analytic properties of the eigenfunctions. One can expect 
that the set of spin lattice states constructed in this way is complete. This is supported by 
an exact analytic proof in the two-magnon case. 

The analysis of the explicit form of equations (30) available for M = 2,3 shows that the 
spectrum of the lattice Hamiltonian with the exchange (5) is not additive, rather it is given 
in terms of pseudomomenta { p )  or phases which parametrize the sets ( p .  q }  [IO, 191. The 
problem of fmding appropriate set of parameters which gives the 'separation' of the spectrum 
remains open. It would be also of interest to consider various limits (N -+ CO, K + 0, CO) 
so as to recover the results of [l,  3,171 and prove the validity of the approximate methods 
of the asymptotic Bethe ansae after finding the explicit form of the functions qb(p )  and 
EM@). 

I would like to thank Professor M Takahashi for his interest to this work and for useful 
discussions. The financial support of the Ministry of Education, Science and Culture of 
Japan is gratefully acknowledged. 
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